4 resultados para Cyclosporine, Mycophenolate mofetil, Leflunomide, Alefacept, Biologictherapy

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The widely used immunosuppressant cyclosporine A (CSA) blocks nuclear translocation of the transcription factor, NF-AT (nuclear factor of activated T cells), preventing its activity. mRNA for several NF-AT isoforms has been shown to exist in cells outside of the immune system, suggesting a possible mechanism for side effects associated with CSA treatment. In this study, we demonstrate that CSA inhibits biochemical and morphological differentiation of skeletal muscle cells while having a minimal effect on proliferation. Furthermore, in vivo treatment with CSA inhibits muscle regeneration after induced trauma in mice. These results suggest a role for NF-AT–mediated transcription outside of the immune system. In subsequent experiments, we examined the activation and cellular localization of NF-AT in skeletal muscle cells in vitro. Known pharmacological inducers of NF-AT in lymphoid cells also stimulate transcription from an NF-AT–responsive reporter gene in muscle cells. Three isoforms of NF-AT (NF-ATp, c, and 4/x/c3) are present in the cytoplasm of muscle cells at all stages of myogenesis tested. However, each isoform undergoes calcium-induced nuclear translocation from the cytoplasm at specific stages of muscle differentiation, suggesting specificity among NF-AT isoforms in gene regulation. Strikingly, one isoform (NF-ATc) can preferentially translocate to a subset of nuclei within a single multinucleated myotube. These results demonstrate that skeletal muscle cells express functionally active NF-AT proteins and that the nuclear translocation of individual NF-AT isoforms, which is essential for the ability to coordinate gene expression, is influenced markedly by the differentiation state of the muscle cell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graft loss from chronic rejection has become the major obstacle to the long-term success of whole organ transplantation. In cardiac allografts, chronic rejection is manifested as a diffuse and accelerated form of arteriosclerosis, termed cardiac allograft vasculopathy. It has been suggested that T-cell recognition of processed alloantigens (allopeptides) presented by recipient antigen-presenting cells through the indirect pathway of allorecognition plays a critical role in the development and progression of chronic rejection. However, definitive preclinical evidence to support this hypothesis is lacking. To examine the role of indirect allorecognition in a clinically relevant large animal model of cardiac allograft vasculopathy, we immunized MHC inbred miniature swine with synthetic polymorphic peptides spanning the α1 domain of an allogeneic donor-derived swine leukocyte antigen class I gene. Pigs immunized with swine leukocyte antigen class I allopeptides showed in vitro proliferative responses and in vivo delayed-type hypersensitivity responses to the allogeneic peptides. Donor MHC class I disparate hearts transplanted into peptide-immunized cyclosporine-treated pigs not only rejected faster than unimmunized cyclosporine-treated controls (mean survival time = 5.5 +/−1.7 vs. 54.7 +/−3.8 days, P < 0.001), but they also developed obstructive fibroproliferative coronary artery lesions much earlier than unimmunized controls (<9 vs. >30 days). These results definitively link indirect allorecognition and cardiac allograft vasculopathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Ca2+-calmodulin-activated Ser/Thr protein phosphatase calcineurin and the downstream transcriptional effectors of calcineurin, nuclear factor of activated T cells, have been implicated in the hypertrophic response of the myocardium. Recently, the calcineurin inhibitory agents cyclosporine A and FK506 have been extensively used to evaluate the importance of this signaling pathway in rodent models of cardiac hypertrophy. However, pharmacologic approaches have rendered equivocal results necessitating more specific or genetic-based inhibitory strategies. In this regard, we have generated Tg mice expressing the calcineurin inhibitory domains of Cain/Cabin-1 and A-kinase anchoring protein 79 specifically in the heart. ΔCain and ΔA-kinase-anchoring protein Tg mice demonstrated reduced cardiac calcineurin activity and reduced hypertrophy in response to catecholamine infusion or pressure overload. In a second approach, adenoviral-mediated gene transfer of ΔCain was performed in the adult rat myocardium to evaluate the effectiveness of an acute intervention and any potential species dependency. ΔCain adenoviral gene transfer inhibited cardiac calcineurin activity and reduced hypertrophy in response to pressure overload without reducing aortic pressure. These results provide genetic evidence implicating calcineurin as an important mediator of the cardiac hypertrophic response in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Blocking CD28-B7 T-cell costimulation by systemic administration of CTLA4Ig, a fusion protein which binds B7 molecules on the surface of antigen-presenting cells, prevents rejection and induces tolerance in experimental acute allograft rejection models. We tested the effect of CTLA4Ig therapy on the process of chronic renal allograft rejection using an established experimental transplantation model. F344 kidneys were transplanted orthotopically into bilaterally nephrectomized LEW recipients. Control animals received low dose cyclosporine for 10 days posttransplantation. Administration of a single injection of CTLA4Ig on day 2 posttransplant alone or in addition to the low dose cyclosporine protocol resulted in improvement of long-term graft survival as compared with controls. More importantly, control recipients which received cyclosporine only developed progressive proteinuria by 8-12 weeks, and morphological evidence of chronic rejection by 16-24 weeks, including widespread transplant arteriosclerosis and focal and segmental glomerulosclerosis, while animals treated with CTLA4Ig alone or in addition to cyclosporine did not. Competitive reverse transcriptase-PCR and immunohistological analysis of allografts at 8, 16, and 24 weeks showed attenuation of lymphocyte and macrophage infiltration and activation in the CTLA4Ig-treated animals, as compared with cyclosporine-alone treated controls. These data confirm that early blockade of the CD28-B7 T-cell costimulatory pathway prevents later development and evolution of chronic renal allograft rejection. Our results indicate that T-cell recognition of alloantigen is a central event in initiating the process of chronic rejection, and that strategies targeted at blocking T-cell costimulation may prove to be a valuable clinical approach to preventing development of the process.